Use a finite sum to estimate the average value of f on the given interval by partitioning the interval into four subintervals of equal length and evaluating f at the subinterval midpoints.f(x)=x3 on [0, 2]

Respuesta :

Answer:

Average length of the given function

 A(x)    [tex]= \frac{4}{3}[/tex]

Step-by-step explanation:

Step(i):-

Given function f(x) = x³  on [0,2]

Given interval by partitioning the interval into four subintervals of equal length

The average length of four subintervals of equal length

[tex]Average length = \frac{1}{b-a} \int\limits^b_a {f(x)} \, dx[/tex]  

Step(ii):-

[tex]Average length = \frac{1}{2-0} \int\limits^2_0 {x^3} \, dx[/tex]

Now integrating

                [tex]\int\limits {x^{n} } \, dx = \frac{x^{n+1} }{n+1}[/tex]

[tex]Average length = \frac{1}{2-0}( \frac{x^3}{3} )_{0} ^{2}[/tex]

Final answer

Average length of the given function

              [tex]= \frac{1}{2-0}( \frac{2^3}{3} ) = \frac{4}{3}[/tex]