Answer:
[tex]\frac{dA}{dt}=660 millimetre/sec[/tex]
Step-by-step explanation:
From the question we are told that
Increase rate [tex]\triangle L=15 millimetre\ per\ second[/tex]
Length L=millimetre
Generally the area of the square is given by [tex]A=L^2[/tex]
Therefore
[tex]\frac{dA}{dt}=\alpha S*\frac{dS}{dt}[/tex]
[tex]\frac{dA}{dt}=2*22*(15)[/tex]
Generally rate of change of area is given as
[tex]\frac{dA}{dt}=660 millimetre/sec[/tex]