Respuesta :

Answer:

B. [tex] \frac{4}{(d - 6)} [/tex]

Step-by-step explanation:

[tex] \frac{2d - 6}{d^2 + 2d - 48} \div \frac{d - 3}{2d + 16} [/tex]

Change the operation from ÷ to ×, then flip the fraction by your right upside down.

[tex] \frac{2d - 6}{d^2 + 2d - 48} \times \frac{2d + 16}{d - 3} [/tex]

[tex] \frac{2d - 6}{d^2 + 8d - 6d - 48} \times \frac{2d + 16}{d - 3} [/tex]

[tex] \frac{2(d - 3)}{d(d + 8) - 6(d + 8)} \times \frac{2(d + 8)}{d - 3} [/tex]

[tex] \frac{2(d - 3)}{(d + 8)(d - 6)} \times \frac{2(d + 8)}{d - 3} [/tex]

[tex] \frac{2(1)}{(1)(d - 6)} \times \frac{2(1)}{1} [/tex]

[tex] \frac{2}{(d - 6)} \times \frac{2}{1} [/tex]

[tex] \frac{2 \times 2}{(d - 6) \times 1} [/tex]

[tex] \frac{4}{(d - 6)} [/tex]