Respuesta :

Answer:

Step-by-step explanation:

(fg)(x) )

[tex](x+4)*(3x^{2} -7)[/tex]=[tex]3x^{3} -7x+12x^{2} -28[/tex] = [tex]3x^{3} +12x^{2} -7x-28[/tex]

Composite functions are functions that are gotten from combining multiple functions.

The value of the composite function (f o g)(x) is 3x^2 -3.

The functions are given as:

[tex]f(x) = x + 4[/tex]

[tex]g(x) = 3x^2 - 7[/tex]

To calculate the composite function (f o g)(x), we make use of:

[tex](f\ o\ g)(x) = f(g(x))[/tex]

We have:

[tex]f(x) = x + 4[/tex]

Substitute g(x) for x

[tex]f(g(x)) = g(x) + 4[/tex]

Substitute [tex]g(x) = 3x^2 - 7[/tex]

[tex]f(g(x)) = 3x^2 - 7 + 4[/tex]

[tex]f(g(x)) = 3x^2 -3[/tex]

Recall that:

[tex](f\ o\ g)(x) = f(g(x))[/tex]

So, we have:

[tex](f\ o\ g)(x) = 3x^2 -3[/tex]

Hence, the value of the composite function (f o g)(x) is 3x^2 -3.

Read more about composite functions at:

https://brainly.com/question/10687170