Respuesta :
I just did this the answer is C. g(x) = –2(x – 5)2 + 9

The required function is [tex]g(x)=-2(x-5)^2+9[/tex].
Important information:
- Vertex of parabola is at (5,9).
- Parabola passes through the point (3,1).
We need to find the equation in vertex form for the function g.
Parabola:
The vertex form of a parabola is:
[tex]g(x)=a(x-h)^2+k[/tex] ...(i)
Where, [tex]a[/tex] is a constant and [tex](h,k)[/tex] is the vertex.
Substitute [tex]h=5,k=9[/tex] in (i).
[tex]g(x)=a(x-5)^2+9[/tex] ...(ii)
Parabola passes through the point (3,1). So, substitute [tex]x=3,g(x)=1[/tex] in (ii).
[tex]1=a(3-5)^2+9[/tex]
[tex]1-9=a(-2)^2[/tex]
[tex]-8=4a[/tex]
[tex]-2=a[/tex]
Substitute [tex]a=-2[/tex] in (ii).
[tex]g(x)=-2(x-5)^2+9[/tex]
Thus, the required function is [tex]g(x)=-2(x-5)^2+9[/tex].
Find out more about 'parabola' here:
https://brainly.com/question/15165354