A sinusoidal wave with wavelength 0.500 m travels along a string. The maximum transverse speed of a point on the string is. 4.00 m/s and the maximum transverse acceleration is 1.00 x 105 m/s2. What is the propagation speed of the wave

Respuesta :

Answer:

The velocity [tex]v = 1989.2 \ m/s[/tex]

Explanation:

From the question we are told that

    The wavelength is [tex]\lambda = 0.500 \ m[/tex]

     The maximum transverse speed is  [tex]v = 4.0 \ m/s[/tex]

      The maximum transverse acceleration is  [tex]a = 1.00 *10^{5} \ m/s^2[/tex]

Generally the frequency of the wave is mathematically represented as

                    [tex]f = \frac{w}{2 \pi }[/tex]

Here  w  is the angular speed which is mathematically evaluated as

      [tex]w = \frac{a}{v}[/tex]

=>    [tex]w = \frac{1.00 *10^{5}}{4}[/tex]

=>    [tex]w = 25000 \ rad/sec[/tex]

So

       [tex]f = \frac{ 25000 }{2 * 3.142 }[/tex]

=>    [tex]f = \frac{ 25000 }{2 * 3.142 }[/tex]

=>    [tex]f = 3978.4 \ Hz[/tex]

Gnerally the propagation speed of the wave is mathematically represented as

        [tex]v = f * \lambda[/tex]

=>      [tex]v = 3978.4 * 0.500[/tex]

=>      [tex]v = 1989.2 \ m/s[/tex]