Considering only (110), (1 1 0), (101), and (10 1 ) as the possible slip planes, calculate the stress at which a BCC single crystal will yield if the critical resolved shear stress is 50 MPa and the load is applied in the [100] direction.

Respuesta :

Solution :

i. Slip plane (1 1 0)

Slip direction -- [1 1 1]

Applied stress direction = ( 1 0 0 ]

τ = 50 MPa    ( Here slip direction must be perpendicular to slip plane)

τ = σ cos Φ cos λ

[tex]$\cos \phi = \frac{(1,0,0) \cdot (1,1,0)}{1 \times \sqrt2}$[/tex]

       [tex]$=\frac{1}{\sqrt2 }$[/tex]

[tex]$\cos \lambda = \frac{(1,0,0) \cdot (1,-1,1)}{1 \times \sqrt3}$[/tex]

       [tex]$=\frac{1}{\sqrt3 }$[/tex]

  τ = σ cos Φ cos λ

∴ [tex]$50= \sigma \times \frac{1}{\sqrt2} \times \frac{1}{\sqrt3} $[/tex]

  σ = 122.47 MPa

ii. Slip plane  --- (1 1 0)

   Slip direction -- [1 1 1]

  [tex]$\cos \phi = \frac{(1, 0, 0) \cdot (1, -1, 0)}{1 \times \sqrt2} =\frac{1}{\sqrt2}$[/tex]

   [tex]$\cos \lambda = \frac{(1, 0, 0) \cdot (1, 1, -1)}{1 \times \sqrt3} =\frac{1}{\sqrt3}$[/tex]

 τ = σ cos Φ cos λ

∴ [tex]$50= \sigma \times \frac{1}{\sqrt2} \times \frac{1}{\sqrt3} $[/tex]

  σ = 122.47 MPa

iii. Slip plane  --- (1 0 1)

    Slip direction --- [1 1 1]

[tex]$\cos \phi = \frac{(1, 0, 0) \cdot (1, 0, 1)}{1 \times \sqrt2} =\frac{1}{\sqrt2}$[/tex]

   [tex]$\cos \lambda = \frac{(1, 0, 0) \cdot (1, 1, -1)}{1 \times \sqrt3} =\frac{1}{\sqrt3}$[/tex]

τ = σ cos Φ cos λ

∴ [tex]$50= \sigma \times \frac{1}{\sqrt2} \times \frac{1}{\sqrt3} $[/tex]

  σ = 122.47 MPa

iv. Slip plane -- (1 0 1)

    Slip direction  ---- [1 1 1]

[tex]$\cos \phi = \frac{(1, 0, 0) \cdot (1, 0, -1)}{1 \times \sqrt2}=\frac{1}{\sqrt2}$[/tex]

[tex]$\cos \lambda = \frac{(1, 0, 0) \cdot (1, -1, 1)}{1 \times \sqrt3} =\frac{1}{\sqrt3}$[/tex]

τ = σ cos Φ cos λ

∴ [tex]$50= \sigma \times \frac{1}{\sqrt2} \times \frac{1}{\sqrt3} $[/tex]

  σ = 122.47 MPa

∴ (1, 0, -1). (1, -1, 1) = 1 + 0 - 1 = 0