Determine whether PQ and UV are parallel,
perpendicular, or neither.
1.P(-3,-2), Q(9,1), U(3,6), V(5,-2)
2.P(-10,7), Q(2,1), U(4,0), V(6,1)
3.P(1,1), Q(9,8), U(-6,1), V(2,8)
4.P(-4,0), Q(0,3), U(-4,-3), V(8,6)
5.P(-9,2), Q(0,1), U(-1,8), V(-2,-1)

Determine whether PQ and UV are parallel perpendicular or neither 1P32 Q91 U36 V52 2P107 Q21 U40 V61 3P11 Q98 U61 V28 4P40 Q03 U43 V86 5P92 Q01 U18 V21 class=

Respuesta :

Answer:

The answer is below

Step-by-step explanation:

The slope of a line (m) is given by:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Two lines are parallel if they have the same slope and perpendicular if the product of their slope is -1.

1)

[tex]Slope\ of\ PQ=\frac{1-(-2)}{9-(-3)}=\frac{1}{4} \\\\Slope\ of\ UV=\frac{-2-6}{5-3}=-4[/tex]

Since the product of their slope is -1, they are perpendicular

2)

[tex]Slope\ of\ PQ=\frac{1-7}{2-(-10)}=-\frac{1}{2} \\\\Slope\ of\ UV=\frac{1-0}{6-4}=\frac{1}{2}[/tex]

Since the slope is not the same or product of their slope is not -1, they are neither parallel or perpendicular

3)

[tex]Slope\ of\ PQ=\frac{8-1}{9-1}=\frac{7}{8} \\\\Slope\ of\ UV=\frac{8-1}{2-(-6)}=\frac{7}{8}[/tex]

Since the slopes are the same, they are parallel

4)

[tex]Slope\ of\ PQ=\frac{3-0}{9-(-4)}=\frac{3}{4} \\\\Slope\ of\ UV=\frac{6-(-3)}{8-(-4)}=\frac{3}{4}[/tex]

Since the slopes are the same, they are parallel

5)

[tex]Slope\ of\ PQ=\frac{1-2}{0-(-9)}=-\frac{1}{9} \\\\Slope\ of\ UV=\frac{-1-8}{-2-(-1)}=9[/tex]

Since the product of their slope is -1, they are perpendicular

Answer:

9

Step-by-step explanation: