Dilate the the triangle, scale factor = 3 (positive 3, ignore the
negative in the image below) with a center of dilation about
the origin.
A(-7,-6)
B(-5,-2)
C(-1,-5)

Dilate the the triangle scale factor 3 positive 3 ignore the negative in the image below with a center of dilation about the origin A76 B52 C15 class=

Respuesta :

Answer:

The rule of dilation is [tex]P'(x,y) = 3\cdot P(x,y)[/tex].

The vertices of the dilated triangle are [tex]A'(x,y) = (-21, -18)[/tex], [tex]B'(x,y) = (-15,-10)[/tex] and [tex]C'(x,y) = (-3,-15)[/tex], respectively.

Step-by-step explanation:

From Linear Algebra, we define the dilation by the following definition:

[tex]P'(x,y) = O(x,y) + k\cdot[P(x,y)-O(x,y)][/tex] (1)

Where:

[tex]O(x,y)[/tex] - Center of dilation, dimensionless.

[tex]k[/tex] - Scale factor, dimensionless.

[tex]P(x,y)[/tex] - Original point, dimensionless.

[tex]P'(x,y)[/tex] - Dilated point, dimensionless.

If we know that [tex]O(x,y) = (0,0)[/tex], [tex]k = 3[/tex], [tex]A(x,y) = (-7,-6)[/tex], [tex]B(x,y) = (-5,-2)[/tex] and [tex]C(x,y) =(-1,-5)[/tex], then dilated points of triangle ABC are, respectively:

[tex]A'(x,y) = O(x,y) + k\cdot [A(x,y)-O(x,y)][/tex] (2)

[tex]A'(x,y) = (0,0) + 3\cdot [(-7,-6)-(0,0)][/tex]

[tex]A'(x,y) = (-21, -18)[/tex]

[tex]B'(x,y) = O(x,y) + k\cdot [B(x,y)-O(x,y)][/tex] (3)

[tex]B'(x,y) = (0,0) + 3\cdot [(-5,-2)-(0,0)][/tex]

[tex]B'(x,y) = (-15,-10)[/tex]

[tex]C'(x,y) = O(x,y) + k\cdot [C(x,y)-O(x,y)][/tex] (4)

[tex]C'(x,y) = (0,0) +3\cdot [(-1,-5)-(0,0)][/tex]

[tex]C'(x,y) = (-3,-15)[/tex]

The rule of dilation is:

[tex]P'(x,y) = 3\cdot P(x,y)[/tex] (5)

The vertices of the dilated triangle are [tex]A'(x,y) = (-21, -18)[/tex], [tex]B'(x,y) = (-15,-10)[/tex] and [tex]C'(x,y) = (-3,-15)[/tex], respectively.