Step-by-step explanation:
Consider an engineering material of initial length Lo, Area (A), Modulus of elasticity (E) and applied a force P due to which change in the length of the material is δ2 from it’s original length (Lo)
Initial length of the material is Lo. Hence, at time t = 0 when no force applied on the material the length of the material will not change (i.e., at time t=0, δ1 = 0)
Modulus of elasticity of the material:
[tex]E=\frac{P \cdot L_{o}}{A\left[\delta_{2}-\delta_{1}\right]}[/tex]
Area of the material:
[tex]E=\frac{P \cdot L_{o}}{A\left[\delta_{2}-\delta_{1}\right]}[/tex]
[tex]A=\frac{P \cdot L_{o}}{E\left[\delta_{2}-\delta_{1}\right]}[/tex]
Length of the material:
[tex]E=\frac{P \cdot L_{0}}{A\left[\delta_{2}-\delta_{1}\right]}[/tex]
[tex]L_{0}=\frac{E \cdot A\left[\delta_{2}-\delta_{1}\right]}{P}[/tex]