Quadratic
3p^2−7p−1=0

Answer:
[tex]x=\frac{7\pm\sqrt{61} }{6}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Algebra I
Step-by-step explanation:
Step 1: Define
3p² - 7p - 1 = 0
Step 2: Identify Variables
a = 3
b = -7
c = -1
Step 3: Find roots
Answer:
x = 7 + √61 ÷ 6
Step-by-step explanation:
3p² - 7p - 1 = 0 is a given equation
3p² - 7p - 1 = 0
Here,
a = 3
b = - 7
c = - 1
Now, Discriminant
D = b² - 4ac
= (- 7)² - 4 (3)(- 1)
= 49 + 12
D = 61 > 0
So, Quadratic Equation
ax² + bx + c = 0
x = - b ± √b² - 4ac ÷ 2a
x = - (- 7) ± √(- 7)² - 4 (3)(- 1) ÷ 2(3)
x = 7 ± √61 ÷ 6
x = 7 ± √61 ÷ 6
x = 7 + √61 ÷ 6 or x = 7 - √61 ÷ 6
∴ Not real Value
Thus, The real value of x is 7 + √61 ÷ 6
-TheUnknownScientist