Find the dimensions of the box with volume 8000 cm3 that has minimal surface area. (Let x, y, and z be the dimensions of the box.)

Respuesta :

Answer:

[tex]x = y = z = 20[/tex]

Step-by-step explanation:

Given

[tex]Volume = 8000cm^3[/tex]

Required

Determine the dimensions that minimizes the surface area.

Surface area of a box is;

[tex]S = 2(xy + xz + yz)[/tex]

Volume of a box is:

[tex]V = xyz[/tex]

Make z the subject

[tex]z = \frac{V}{xy}[/tex]

Substitute 8000 for V

[tex]z = \frac{8000}{xy}[/tex]

Substitute 1000/xy for z in [tex]S = 2(xy + xz + yz)[/tex]

[tex]S = 2(xy + x\frac{8000}{xy}+y\frac{8000}{xy})[/tex]

[tex]S = 2(xy + \frac{8000}{y}+\frac{8000}{x})[/tex]

Expand:

[tex]S = 2xy + \frac{16000}{y}+\frac{16000}{x}[/tex]

[tex]S = 2xy + 16000(\frac{1}{y}+\frac{1}{x})[/tex]

Differentiate S w.r.t x

[tex]\frac{dS}{dx} = 2y - \frac{16000}{x^2}[/tex]

Differentiate S w.r.t y

[tex]\frac{dS}{dy} = 2x - \frac{16000}{y^2}[/tex]

Equate both differentiation to 0

[tex]2x - \frac{16000}{y^2} = 0[/tex]

Multiply through by [tex]y^2[/tex]

[tex]2xy^2 - 16000 = 0[/tex]

[tex]2xy^2 = 16000[/tex]

Divide through by 2

[tex]xy^2 = 8000[/tex] -- (1)

[tex]2y - \frac{16000}{x^2} = 0[/tex]

Multiply through by x^2

[tex]2x^2y - 16000 = 0[/tex]

[tex]2x^2y = 16000[/tex]

Divide through by 2

[tex]x^2y = 8000[/tex] --- (2)

Divide (1) by (2)

[tex]\frac{x^2y = 8000}{xy^2 = 8000}[/tex]

[tex]\frac{x}{y} = 1[/tex]

[tex]x = y[/tex]

Substitute y for x in (1)

[tex]x^2y = 8000[/tex]

[tex]x^2 * x = 8000[/tex]

[tex]x^3 = 8000[/tex]

Take cube roots

[tex]x =20[/tex]

Hence;

[tex]x = y = 20[/tex]

Recall that:

[tex]z = \frac{8000}{xy}[/tex]

[tex]z = \frac{8000}{20 * 20}[/tex]

[tex]z = 20[/tex]

Hence, the dimension of the box that minimizes the surface area of the box is:

[tex]x = y = z = 20[/tex]