Use the Discriminant to find the number and type of solutions to x^2 + 6x -5 = 4x^2
A 2 Real Solutions
B 1 Real Solution
C Real Solutions, 2 Imaginary Solutions
D 3 Solution

Respuesta :

Answer:

The equation [tex]x^2 + 6x -5 = 4x^2[/tex] have 2 non-real solution, 2 imaginary solutions.

Step-by-step explanation:

Using the Discriminant to find the number and type of solutions to [tex]x^2 + 6x -5 = 4x^2\\x^2-4x^2+6x-5=0\\-3x^2+6x-5=0[/tex]

The discriminant is: [tex]b^2-4ac[/tex]

We have a = -3, b=6 and c=-5

Putting values and finding discriminant

[tex]b^2-4ac\\=(6)^2-4(-3)(-5)\\=36-60\\=-24\\[/tex]

So, we get discriminant = -24

if discriminant  < 0 the solution will have two non-real imaginary solutions.

In our case discriminant  < 0 i,e discriminant  = -24

So, The equation [tex]x^2 + 6x -5 = 4x^2[/tex] have 2 non-real solution, 2 imaginary solutions.