Respuesta :

Answer:

[tex]Probability = \frac{2}{9}[/tex]

Step-by-step explanation:

Given:

A pair of dice

Required

Determine the probability of a sum of 5 or 9

Let the sample space of the first die be S1 and the second, S2

[tex]S_1 = {1,2,3,4,5,6}[/tex] --- 6 outcomes

[tex]S_2 = {1,2,3,4,5,6}[/tex]  --- 6 outcomes

Number of sample space, n is:

[tex]n = 6 * 6[/tex]

[tex]n = 36[/tex]

Next, we list out all possibilities of obtaining a sum of 5

[tex]Sum\ of\ 5 = \{(1,4),(2,3),(3,2),(4,1)\}[/tex]

n(Sum5 )= 4

Next, we list out all possibilities of obtaining a sum of 9

[tex]Sum\ of\ 9 = \{(3,6),(4,5),(5,4),(6,3)\}[/tex]

n(Sum9)= 4

The required probability is then calculated as:

[tex]Probability = \frac{n(Sum9)}{Total} + \frac{n(Sum5)}{Total}[/tex]

[tex]Probability = \frac{4}{36} + \frac{4}{36}[/tex]

Take LCM

[tex]Probability = \frac{4+4}{36}[/tex]

[tex]Probability = \frac{8}{36}[/tex]

Simplify

[tex]Probability = \frac{2}{9}[/tex]