Suppose a and b are positive integers such that lcm(a,b) = 90 and gcd(a,b) = 3. If b is three more than a, then what are the values of a and b?​

Respuesta :

Given:

LCM(a,b) = 90 and GCD(a,b) = 3.

b is three more than a.

To find:

The values of a and b.

Solution:

We have,

LCM(a,b) = 90

GCD(a,b) = HCF(a,b) = 3

According to the question,

[tex]b=a+3[/tex]

If a and b are two positive integers, then

[tex]a\times b=HCF(a,b)\times LCM(a,b)[/tex]

[tex]a\times (a+3)=3\times 90[/tex]

[tex]a^2+3a=270[/tex]

[tex]a^2+3a-270=0[/tex]

Splitting the middle terms, we get

[tex]a^2+18a-15a-270=0[/tex]

[tex]a(a+18)-15(a+18)=0[/tex]

[tex](a+18)(a-15)=0[/tex]

Using zero product property, we get

[tex]a+18=0[/tex] and [tex]a-15=0[/tex]

[tex]a=-18[/tex] and [tex]a=15[/tex]

a is a positive integer so it cannot be negative. So, a=15.

Now,

[tex]b=a+3[/tex]

[tex]b=15+3[/tex]

[tex]b=18[/tex]

Therefore, the value of a is 15 and the value of b is 18.