Respuesta :

Answer:

[tex]xy^{\frac{2}{9}}[/tex] = [tex]x\sqrt[9]{y^2}[/tex]

Explanation:

Given

[tex]xy^{\frac{2}{9}}[/tex]

Required

Write an equivalent expression

[tex]xy^{\frac{2}{9}}[/tex]

Split the expression

[tex]x * y^{\frac{2}{9}}[/tex]

Further, simplify using the following law of indices: [tex]a^{ \frac{m}{n}} = a^{ m * \frac{1}{n}}[/tex]

[tex]x * y^{\frac{2}{9}}[/tex] becomes

[tex]x * y^{2 * \frac{1}{9}}[/tex]

This in turn gives:

[tex]x * (y^{2}) ^{* { \frac{1}{9}}}[/tex]

In indices: [tex]y^{\frac{1}{n}} = \sqrt[n] y[/tex]

[tex]x * (y^{2}) ^{* { \frac{1}{9}}}[/tex] becomes

[tex]x * \sqrt[9]{ y^2}[/tex]

[tex]x\sqrt[9]{y^2}[/tex]

Hence:

[tex]xy^{\frac{2}{9}}[/tex] = [tex]x\sqrt[9]{y^2}[/tex]

Answer:

B on edge.

Explanation: