Respuesta :

Answer:

[tex]CPD = 80[/tex]

[tex]PCD = 44[/tex]

Explanation:

Given

[tex]AB || CD[/tex]

[tex]BAD = 56[/tex]

[tex]CPA = 100[/tex]

See attachment

Required

Determine PCD and CPD

First, we need to calculate CPD

Since DPA is a straight line and CPA = 100;

We have that:

[tex]CPA + CPD = 180[/tex] --- angle on a straight theorem

Substitute 100 for CPA

[tex]100 + CPD = 180[/tex]

Subtract 100 from both sides

[tex]100-100 + CPD = 180-100[/tex]

[tex]CPD = 80[/tex]

Next, we calculate PCD

We have that:

[tex]DAB= ADC = 56[/tex]  --alternate angle

In triangle PCD

[tex]PCD + CPD + PDC = 180[/tex] --- angles in a triangle

Where

[tex]PDC = ADC = 56[/tex]

So, we have:

[tex]PCD +80 + 56 = 180[/tex]

[tex]PCD +136 = 180[/tex]

Subtract 136 from both sides

[tex]PCD = 180 - 136[/tex]

[tex]PCD = 44[/tex]

Ver imagen MrRoyal