How to solve this ? I am not sure pls if you know the answer answer it I really neeed it for marks

Answer:
L.S = R.S ⇒ Proved down
Step-by-step explanation:
Let us revise some rules in trigonometry
To solve the question let us find the simplest form of the right side and the left side, then show that they are equal
∵ L.S = csc2α + 1
→ By using the 3rd rule above
∴ L.S = [tex]\frac{1}{sin2\alpha}[/tex] + 1
→ Change 1 to [tex]\frac{sin2\alpha}{sin2\alpha}[/tex]
∴ L.S = [tex]\frac{1}{sin2\alpha}[/tex] + [tex]\frac{sin2\alpha}{sin2\alpha}[/tex]
→ The denominators are equal, then add the numerators
∴ L.S = [tex]\frac{1+sin2\alpha}{sin2\alpha}[/tex]
∵ R. S = [tex]\frac{(sin\alpha+cos\alpha)^{2} }{sin2\alpha}[/tex]
∵ (sinα + cosα)² = sin²α + 2 sinα cosα + cos²α
∴ (sinα + cosα)² = sin²α + cos²α + 2 sinα cosα
→ By using the 1st rule above, equate sin²α + cos²α by 1
∴ (sinα + cosα)² = 1 + 2 sinα cosα
→ By using the 2nd rule above, equate 2 sinα cosα by sin2α
∴ (sinα + cosα)² = 1 + sin2α
→ Substitute it in the R.S above
∴ R. S = [tex]\frac{1+sin2\alpha}{sin2\alpha}[/tex]
∵ L.S = R.S
∴ csc 2α + 1 = [tex]\frac{(sin\alpha+cos\alpha)^{2} }{sin2\alpha}[/tex]