Answer:
[tex](f+g)(x)=x^2-4x-21[/tex]
Step-by-step explanation:
We are given:
[tex]f(x)=x^2-5x-14\text{ and } g(x)=x-7[/tex]
And we want to find:
[tex](f+g)(x)[/tex]
This is equivalent to:
[tex]=f(x)+g(x)[/tex]
Therefore, by substitution:
[tex]=(x^2-5x-14)+(x-7)[/tex]
Rearranging gives:
[tex]=(x^2)+(-5x+x)+(-14-7)[/tex]
Combine like terms:
[tex]=x^2-4x-21[/tex]