write the x and y coordinate (in the second and third column, respectively) of dilation of quadrilateral ABCD with vertices A(1,1), B(2,2), C(4,1) and d(2,-1). Use a scale factor of 2

Respuesta :

Answer:

The coordinates of the dillated vertices are [tex]A'(x,y) = (2,2)[/tex], [tex]B'(x,y) = (4,4)[/tex], [tex]C'(x,y) = (8,2)[/tex] and [tex]D'(x,y) = (4,-2)[/tex].

Step-by-step explanation:

From Linear Algebra, we define dilation by the following equation:

[tex]P'(x,y) = O(x,y) + k\cdot [P(x,y)-O(x,y)][/tex] (1)

Where:

[tex]O(x,y)[/tex] - Center of dilation, dimensionless.

[tex]P(x,y)[/tex] - Original point, dimensionless.

[tex]k[/tex] - Scale factor, dimensionless.

[tex]P'(x,y)[/tex] - Dilated point, dimensionless.

If we know that [tex]O(x,y) = (0, 0)[/tex], [tex]k = 2[/tex], [tex]A(x,y) = (1,1)[/tex], [tex]B(x,y) = (2,2)[/tex], [tex]C(x,y) = (4,1)[/tex] and [tex]D(x,y) = (2,-1)[/tex], then the dilated points are, respectively:

Point A

[tex]A'(x,y) = O(x,y) + k\cdot [A(x,y)-O(x,y)][/tex] (2)

[tex]A'(x,y) = (0,0) + 2\cdot [(1,1)-(0,0)][/tex]

[tex]A'(x,y) = (2,2)[/tex]

Point B

[tex]B'(x,y) = O(x,y) + k\cdot [B(x,y)-O(x,y)][/tex] (3)

[tex]B'(x,y) = (0,0) + 2\cdot [(2,2)-(0,0)][/tex]

[tex]B'(x,y) = (4,4)[/tex]

Point C

[tex]C'(x,y) = O(x,y) + k\cdot [C(x,y)-O(x,y)][/tex]

[tex]C'(x,y) = (0,0) + 2\cdot [(4,1)-(0,0)][/tex]

[tex]C'(x,y) = (8,2)[/tex]

Point D

[tex]D'(x,y) = O(x,y) + k\cdot [D(x,y)-O(x,y)][/tex]

[tex]D'(x,y) = (0,0) + 2\cdot [(2,-1)-(0,0)][/tex]

[tex]D'(x,y) = (4,-2)[/tex]

The coordinates of the dillated vertices are [tex]A'(x,y) = (2,2)[/tex], [tex]B'(x,y) = (4,4)[/tex], [tex]C'(x,y) = (8,2)[/tex] and [tex]D'(x,y) = (4,-2)[/tex].