Respuesta :

Given:

Triangle ABC is similar to triangle EFG.

Pentagon ABCDE is similar to pentagon QRSTU.

To find:

The length of segment FG.

The missing value in [tex]\dfrac{D}{EA}=\dfrac{?}{UQ}[/tex].

Solution:

In card A,

AC = 15 in.

BC = 9 in.

EG = 10 in.

Triangle ABC is similar to triangle EFG. So, the corresponding sides are proportional.

[tex]\dfrac{AC}{BC}=\dfrac{EG}{FG}[/tex]

Putting the values, we get

[tex]\dfrac{15}{9}=\dfrac{10}{FG}[/tex]

[tex]\dfrac{5}{3}=\dfrac{10}{FG}[/tex]

[tex]5\times FG=3\times 10[/tex]

[tex]5FG=30[/tex]

Divide both sides by 5.

[tex]FG=6[/tex]

Therefore, the length of segment FG is 6 in.

In card B, pentagon ABCDE is similar to pentagon QRSTU.

The corresponding sides of similar figure are proportional. So,

[tex]\dfrac{AB}{QR}=\dfrac{BC}{RS}=\dfrac{CD}{ST}=\dfrac{DE}{TU}=\dfrac{EA}{UQ}[/tex]

Now,

[tex]\dfrac{CD}{ST}=\dfrac{EA}{UQ}[/tex]

It can be written as

[tex]\dfrac{CD}{EA}=\dfrac{ST}{UQ}[/tex]

Therefore, the missing side is ST.