Given:
Length of a carton = [tex]2\dfrac{2}{3}[/tex] feet
Width of a carton = [tex]1\dfrac{1}{8}[/tex] feet
Height of a carton = [tex]1\dfrac{1}{5}[/tex] feet
To find:
The volume of the carton.
Solution:
We know that, volume of the carton is
[tex]V=length\times width \times height[/tex]
Putting the values, we get
[tex]V=2\dfrac{2}{3}\times 1\dfrac{1}{8} \times 1\dfrac{1}{5}[/tex]
[tex]V=\dfrac{(2\times 3)+2}{3}\times \dfrac{(1\times 8)+1}{8} \times \dfrac{(1\times 5)+1}{5}[/tex]
[tex]V=\dfrac{8}{3}\times \dfrac{9}{8} \times \dfrac{6}{5}[/tex]
Taking LCM, we get
[tex]V=\dfrac{18}{5}[/tex]
[tex]V=3\dfrac{3}{5}[/tex]
So, the volume is [tex]3\dfrac{3}{5}[/tex] cubic feet.
Therefore, the correct option is A.