A carton has a length of fraction 2 and 2 over 3 feet, width of fraction 1 and 1 over 8 feet, and height of fraction 1 and 1 over 5 feet. What is the volume of the carton?

fraction 3 and 3 over 5 cubic feet
fraction 4 and 1 over 5 cubic feet
fraction 5 and 2 over 5 cubic feet
fraction 7 and 1 over 5 cubic feet

Respuesta :

Given:

Length of a carton = [tex]2\dfrac{2}{3}[/tex] feet

Width of a carton = [tex]1\dfrac{1}{8}[/tex] feet

Height of a carton = [tex]1\dfrac{1}{5}[/tex] feet

To find:

The volume of the carton.

Solution:

We know that, volume of the carton is

[tex]V=length\times width \times height[/tex]

Putting the values, we get

[tex]V=2\dfrac{2}{3}\times 1\dfrac{1}{8} \times 1\dfrac{1}{5}[/tex]

[tex]V=\dfrac{(2\times 3)+2}{3}\times \dfrac{(1\times 8)+1}{8} \times \dfrac{(1\times 5)+1}{5}[/tex]

[tex]V=\dfrac{8}{3}\times \dfrac{9}{8} \times \dfrac{6}{5}[/tex]

Taking LCM, we get

[tex]V=\dfrac{18}{5}[/tex]

[tex]V=3\dfrac{3}{5}[/tex]

So, the volume is [tex]3\dfrac{3}{5}[/tex] cubic feet.

Therefore, the correct option is A.