Respuesta :

Answer:

The slopes of line segments AC and AD are same or constant i.e [tex]\frac{1}{3}[/tex]

Step-by-step explanation:

We need to find slopes of AC and AD and tell if they are same or not.

The formula used to calculate slope is: [tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]

Finding slope of AC

We have A=(3,2) and C=(0,1)

Finding slope using formula:

We have [tex]x_1=3, y_1=2, x_2=0,y_2=1[/tex]

[tex]Slope=\frac{y_2-y_1}{x_2-x_1}\\Slope=\frac{1-2}{0-3}\\Slope=\frac{-1}{-3}\\Slope=\frac{1}{3}[/tex]

So, Slope of AC is [tex]\frac{1}{3}[/tex]

Finding slope of AD

We have A=(3,2) and C=(9,4)

Finding slope using formula:

We have [tex]x_1=3, y_1=2, x_2=9,y_2=4[/tex]

[tex]Slope=\frac{y_2-y_1}{x_2-x_1}\\Slope=\frac{4-2}{9-3}\\Slope=\frac{2}{6}\\Slope=\frac{1}{3}[/tex]

So, Slope of AD is [tex]\frac{1}{3}[/tex]

So, the slopes of line segments AC and AD are same or constant i.e [tex]\frac{1}{3}[/tex]