Please help me out!!!

Answer:
Shifts 4 units down ---> [tex]g(x)=2x-10[/tex]
Stretches f(x) by a factor of 4 away from x-axis--->[tex]g(x)=8x-6[/tex]
Shifts f(x) 4 units right---> [tex]g(x)=2x-14[/tex]
Compress f(x) by a factor of 1/4 toward the y-axis ---> [tex]g(x)=1/2x-3/2[/tex]
Step-by-step explanation:
We are given [tex]f(x)=2x-6[/tex]
We need to match the transformations.
1) shifts f(x) 4 units down.
When function f(x) shifts k units down the new function becomes f(x)-k
In our case
[tex]g(x)=2x-6-4\\g(x)=2x-10[/tex]
So, Shifts 4 units down ---> [tex]g(x)=2x-10[/tex]
2) Stretches f(x) by a factor of 4 away from x-axis
When function f(x) is stretched by a factor of b away from x-axis the new function becomes f(bx)
[tex]g(x)=2(4x)-6\\g(x)=8x-6[/tex]
So, Stretches f(x) by a factor of 4 away from x-axis--->[tex]g(x)=8x-6[/tex]
3) Shifts f(x) 4 units right
When function f(x) shifts h units right the new function becomes f(x-h)
[tex]g(x)=2(x-4)-6\\g(x)=2x-8-6\\g(x)=2x-14[/tex]
So, Shifts f(x) 4 units right---> [tex]g(x)=2x-14[/tex]
4) Compress f(x) by a factor of 1/4 toward the y-axis
When function f(x) is compressed by h factor of a toward the y-axis the new function becomes h.f(x)
[tex]g(x)=1/4(2x-6)\\g(x)=1/2x-3/2[/tex]
Compress f(x) by a factor of 1/4 toward the y-axis ---> [tex]g(x)=1/2x-3/2[/tex]
(Option Not given)
(If we compress f(x) by a factor of 4 towards y-axis we get g(x)=8x-24)