11) -4, -1, -3
A) f(x) = x + 8x + 19x + 15
B) f(x) x + 8x? + 19x + 4
C) f(x)=r: 8x? 1 27x + 12
D) f(x) – xº +872 + 19x + 12

Write a polynomial function of least degree with integral coefficients that has the given zeros.

Respuesta :

Answer:

The required polynomial is:

[tex]f\left(x\right)=x^3+8x^2+19x+12[/tex]

Step-by-step explanation:

Given the zeros

-4, -1, -3

Zeros can be written as:

x = -4, x = -1, x = -3

Finding the factors

x = -4

x +4 = 0

x = -1

x + 1 = 0

x = -3

x + 3 = 0

Thus, the factor are:

(x+4) (x+1) (x+3)

The original function can be computed by multiplying the factors

[tex]\left(x+4\right)\left(x+1\right)\left(x+3\right)=0[/tex]

as

[tex]\left(x+4\right)\left(x+1\right)=x^2+5x+4[/tex]

so the expression becomes

[tex]\left(x^2+5x+4\right)\left(x+3\right)=0[/tex]

Distribute parentheses

[tex]x^2x+x^2\cdot \:3+5xx+5x\cdot \:3+4x+4\cdot \:3=0[/tex]

[tex]x^2x+3x^2+5xx+5\cdot \:\:3x+4x+4\cdot \:\:3=0[/tex]

[tex]x^3+3x^2+5x^2+15x+4x+12=0[/tex]

Add similar elements: [tex]3x^2+5x^2=8x^2[/tex]

[tex]x^3+8x^2+15x+4x+12 = 0[/tex]

Add similar elements: [tex]15x+4x=19x[/tex]

[tex]x^3+8x^2+19x+12=0[/tex]

Thus, the required polynomial is:

[tex]f\left(x\right)=x^3+8x^2+19x+12[/tex]

Note: your answer choices are a little ambiguous, but I have explained the entire procedure. Hopefully, it will clear your concept.