Respuesta :

Answer:

Combining and simplifying [tex]48(\frac{1}{4}x-\frac{1}{3}y-\frac{2}{6}x-\frac{3}{8}y-\frac{2}{3})[/tex] we get  [tex]\mathbf{-4x-34y-32}[/tex] or we can write as [tex]\mathbf{48(\frac{-x}{12} -\frac{17y}{24}- \frac{2}{3})}[/tex]

Step-by-step explanation:

We need to combine and simplify

[tex]48(\frac{1}{4}x-\frac{1}{3}y-\frac{2}{6}x-\frac{3}{8}y-\frac{2}{3})[/tex]

First we will combine like terms and then perform the mathematical operations like addition or subtraction.

Like terms: terms having same variable

[tex]48(\frac{1}{4}x-\frac{2}{6}x-\frac{1}{3}y-\frac{3}{8}y-\frac{2}{3})[/tex]

Now we take LCM of like terms

[tex]=48(\frac{1}{4}x-\frac{2}{6}x-\frac{1}{3}y-\frac{3}{8}y-\frac{2}{3})\\=48(\frac{x*3-2x*2}{12} +\frac{-y*8-3y*3}{24}- \frac{2}{3})\\=48(\frac{3x-4x}{12} +\frac{-8y-9y}{24}- \frac{2}{3})\\=48(\frac{-x}{12} +\frac{-17y}{24}- \frac{2}{3})\\=48(\frac{-x}{12} -\frac{17y}{24}- \frac{2}{3})[/tex]

Now, we can multiply 48 with terms inside the bracket.

we can simplify the terms if they are both divisible by same number.

[tex]=48(\frac{-x}{12} -\frac{17y}{24}- \frac{2}{3})\\=48(\frac{-x}{12} )-48(\frac{17y}{24})-48(\frac{2}{3}))\\=-4x-34y-32[/tex]

So, Combining and simplifying [tex]48(\frac{1}{4}x-\frac{1}{3}y-\frac{2}{6}x-\frac{3}{8}y-\frac{2}{3})[/tex] we get  [tex]\mathbf{-4x-34y-32}[/tex] or we can write as [tex]\mathbf{48(\frac{-x}{12} -\frac{17y}{24}- \frac{2}{3})}[/tex]