Respuesta :

Given:

The value is tan(195°).

To find:

The exact value of tan(195°).

Solution:

We have,

[tex]\tan (195^\circ)=\tan (180^\circ+15^\circ)[/tex]

[tex]\tan (195^\circ)=\tan (15^\circ)[/tex]      [tex][\because \tan (180^\circ-\theta)=\tan \theta][/tex]

It can be written as

[tex]\tan (195^\circ)=\tan (45^\circ-30^\circ)[/tex]

[tex]\tan (195^\circ)=\dfrac{\tan (45^\circ)-\tan (30^\circ)}{1+\tan (45^\circ)\tan (30^\circ)}[/tex]      [tex][\because \tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}][/tex]

[tex]\tan (195^\circ)=\dfrac{1-\dfrac{1}{\sqrt{3}}}{1+(1)(\dfrac{1}{\sqrt{3}})}[/tex]

[tex]\tan (195^\circ)=\dfrac{\dfrac{\sqrt{3}-1}{\sqrt{3}}}{1+\dfrac{1}{\sqrt{3}}}[/tex]

[tex]\tan (195^\circ)=\dfrac{\dfrac{\sqrt{3}-1}{\sqrt{3}}}{\dfrac{\sqrt{3}+1}{\sqrt{3}}}[/tex]

[tex]\tan (195^\circ)=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}[/tex]

Therefore, the exact value of tan(195°) is [tex]\dfrac{\sqrt{3}-1}{\sqrt{3}+1}[/tex].

Answer:

It's C

Step-by-step explanation: