Respuesta :

Answer:

ya we have to tell its initial value after 11 years it too simple

Answer:

The value after 11 years would be: 2880 us dollars

Step-by-step explanation:

Given the function

[tex]v\left(t\right)=32,000\left(0.80\right)^t[/tex]

The initial value is basically the first output value when the input value = 0.

Here,

The initial value can be obtained by putting t=0 in the function

[tex]v\left(0\right)=32,\:000\left(0.80\right)^0[/tex]

[tex]\mathrm{Apply\:rule}\:a^0=1,\:a\ne \:0[/tex]

[tex]0.8^0=1[/tex]

Thus,

[tex]v\left(0\right)=32000\cdot \:\:1[/tex]

        [tex]=32000[/tex]

Thus, initial value  = v(0) = 32000

Value after 11 years can be obtained by putting t=11 in the function

[tex]v\left(11\right)=32,\:000\left(0.80\right)^{11}[/tex]

as

[tex]0.8^{11}=0.09[/tex]

so the expression becomes

[tex]v(11)=32000\cdot \:\:0.09[/tex]

         [tex]=2880[/tex] us dollars

Thus, the value after 11 years would be: 2880 us dollars