Respuesta :
Answer:
NOT a single ordered pair satisfies the equation.
Step-by-step explanation:
Given the equation
[tex]x^2+y^2=100[/tex]
Let us substitute all the given ordered pairs to find which ordered pair satisfies the equation.
For (0, -100)
[tex]x^2+y^2=100[/tex]
substitute x=0 and y=-100
[tex]0^2+\left(-100\right)^2=100[/tex]
[tex]10000=100[/tex]
FALSE
Thus, the ordered pair (0, -100) does NOT satisfy the equation.
For (10, -10)
[tex]x^2+y^2=100[/tex]
substitute x=10 and y=-10
[tex]10^2+\left(-10\right)^2=100[/tex]
[tex]200=100[/tex]
FALSE
Thus, the ordered pair (10, -10) does NOT satisfy the equation.
For (25, 75)
[tex]x^2+y^2=100[/tex]
substitute x=25 and y=75
[tex]25^2+\left(75\right)^2=100[/tex]
[tex]6250=100[/tex]
FALSE
Thus, the ordered pair (25, 75) does NOT satisfy the equation.
Therefore, NOT a single ordered pair satisfies the equation.
