Respuesta :

Answer:

NOT a single ordered pair satisfies the equation.

Step-by-step explanation:

Given the equation

[tex]x^2+y^2=100[/tex]

Let us substitute all the given ordered pairs to find which ordered pair satisfies the equation.

For (0, -100)

[tex]x^2+y^2=100[/tex]

substitute x=0 and y=-100

[tex]0^2+\left(-100\right)^2=100[/tex]

[tex]10000=100[/tex]

FALSE

Thus, the ordered pair (0, -100) does NOT satisfy the equation.

For (10, -10)

[tex]x^2+y^2=100[/tex]

substitute x=10 and y=-10

[tex]10^2+\left(-10\right)^2=100[/tex]

[tex]200=100[/tex]

FALSE

Thus, the ordered pair (10, -10) does NOT satisfy the equation.

For (25, 75)

[tex]x^2+y^2=100[/tex]

substitute x=25 and y=75

[tex]25^2+\left(75\right)^2=100[/tex]

[tex]6250=100[/tex]

FALSE

Thus, the ordered pair (25, 75) does NOT satisfy the equation.

Therefore, NOT a single ordered pair satisfies the equation.

Ver imagen absor201