A Pelton wheel is supplied with water from a lake at an elevation H above the turbine. The penstock that supplies the water to the wheel is of length , diameter D, and friction factor f. Minor losses are negligible. Show that the power developed by the turbine is maximum when the velocity head at the nozzle exit is 2H/3. Note: The result of Problem 12.61 may be of use.

Respuesta :

Answer:

Following are the proving to this question:

Explanation:

[tex]\frac{D_1}{D} = \frac{1}{(2f(\frac{l}{D}))^{\frac{1}{4}}}[/tex]

using the energy equation for entry and exit value :

[tex]\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0 = \frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g}[/tex]

where

[tex]\to p_0=p_1=0\\\\\to Z_0=Z_1=H\\\\\to v_0=0\\\\AV =A_1V_1 \\\\\to V=(\frac{D_1}{D})^2 V_1\\\\\to V^2=(\frac{D_1}{D})^4 V^{2}_{1}[/tex]

         [tex]= (\frac{1}{(2f (\frac{l}{D} ))^{\frac{1}{4}}})^4\ V^{2}_{1}\\\\[/tex]

         [tex]= \frac{1}{(2f (\frac{l}{D}) )} \ V^{2}_{1}\\[/tex]

[tex]\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0 =\frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g} \\\\[/tex]

[tex]\to 0+0+Z_0 = 0 +\frac{V^{2}_{1} }{2g} +Z_1+ f \frac{l}{D} \frac{\frac{1}{(2f(\frac{l}{D}))}\ V^{2}_{1}}{2g} \\\\\to Z_0 -Z_1 = +\frac{V^{2}_{1}}{2g} \ (1+f\frac{l}{D}\frac{1}{(2f(\frac{l}{D}) )} ) \\\\\to H= \frac{V^{2}_{1}}{2g} (\frac{3}{2}) \\\\\to \frac{V^{2}_{1}}{2g} = H(\frac{3}{2})[/tex]

L.H.S = R.H.S