A diffraction pattern is formed on a screen 150 cm away from a 0.500-mm-wide slit. Monochromatic 546.1-nm light is used. Calculate the fractional intensity I/Imax at a point on the screen 4.10 mm from the center of the principal maximum.

Respuesta :

Solution :

The expression for the intensity of light is given by :

[tex]$I=I_{max}\left(\frac{\sin \frac{\pi a \sin \theta}{\lambda}}{\frac{\pi a \sin \theta}{\lambda} }\right)^2$[/tex]

For a small angle, θ

sin θ = tan θ

        [tex]$=\frac{y}{L}$[/tex]

Therefore the above equation becomes,

[tex]$I=I_{max}\left(\frac{\sin \frac{\pi a y}{\lambda L}}{\frac{\pi a y}{\lambda L} }\right)^2 $[/tex]

The given data is

λ = 546.1 nm

L = distance between the slit and the screen = 140 cm

  = 1.40 m

a = width of the slit

  = [tex]$0.50 \times 10^{-3} \ m$[/tex]

Therefore,

[tex]$I=I_{max}\left(\frac{\sin \frac{\pi \times 0.50 \times 10^{-3} \times 4.10 \times 10^{-3}}{546.1 \times 10^{-9} \times 1.20}}{\frac{\pi \times 0.50 \times 10^{-3} \times 4.10 \times 10^{-3}}{546.1 \times 10^{-9} \times 1.20} }\right)^2 $[/tex]

  [tex]$=\left(\frac{0.170}{9.82}\right)^2$[/tex]

 [tex]$= 2.89 \times 10^{-4} \ I_{max}$[/tex]

Therefore the fractional intensity is   [tex]$\frac{I}{I_{max}}= 2.89 \times 10^{-4} $[/tex]