A hotel rents 240 240 rooms at a rate of $ 40 $40 per day. For each $ 2 $2 increase in the rate, four fewer rooms are rented. Find the room rate that maximizes daily revenue. The rate that maximizes revenue is $

Respuesta :

Answer:

The daily rate that maximizes the revenue is $40 and the maximum revenue is $9600

Step-by-step explanation:

Given

[tex]Rooms = 240[/tex]

[tex]Price= \$40[/tex]

[tex]Increment = \$2[/tex]

First, we calculate the revenue.

[tex]Revenue (r) = Price (p) * Number\ of\ Rooms(n)[/tex]

[tex]r = p*n[/tex]

Let x be the change in rate.

i.e.

For every 2x increment in price (p) i.e. p + 2x

There will be 4 fewer rooms (n) i.e. n - 4x

So, the revenue is updated as:

[tex]r = (p + 2x) * (n - 4x)[/tex]

[tex]Price = 40[/tex]

So:

[tex]r = (40 + 2x) * (n - 4x)[/tex]

[tex]Rooms = 240[/tex]

So:

[tex]r = (40 + 2x) * (240 - 4x)[/tex]

Expand

[tex]r = 40 * 240 - 40 * 4x + 2x * 240 - 2x*4x[/tex]

[tex]r = 9600 - 160x + 480x - 8x^2[/tex]

Reorder

[tex]r = -8x^2 - 160x + 480x + 9600[/tex]

[tex]r = -8x^2 +320x + 9600[/tex]

The maximum of a function is calculated as:

[tex]Max = -\frac{b}{2a}[/tex]

In: [tex]r = -8x^2 +320x + 9600[/tex]

[tex]a = -8[/tex]   [tex]b = 320[/tex]    [tex]c = 9600[/tex]

So:

[tex]Max = -\frac{b}{2a}[/tex]

[tex]Max = -\frac{320}{-8}[/tex]

[tex]Max = \frac{320}{8}[/tex]

[tex]Max = 40[/tex]

To get the maximum revenue;

Substitute 40 for x in [tex]r = -8x^2 +320x + 9600[/tex]

[tex]r = -8(40)^2 + 320 * 40 + 9600[/tex]

[tex]r = 9600[/tex]

The daily rate that maximizes the revenue is $40 and the maximum revenue is $9600