Respuesta :

Given:

[tex]\dfrac{5}{6+2i}[/tex]

To find:

The  quotient in the form a + bi.

Solution:

We have,

[tex]\dfrac{5}{6+2i}[/tex]

Multiply numerator and denominator by 6-2i.

[tex]=\dfrac{5\times (6-2i)}{(6+2i)\times (6-2i)}[/tex]

[tex]=\dfrac{5(6)+5(-2i)}{6^2+(2i)^2}[/tex]

[tex]=\dfrac{30-10i}{36+4i^2}[/tex]

[tex]=\dfrac{30-10i}{36+4(-1)}[/tex]    [tex][\because i^2=-1][/tex]

On further simplification, we get

[tex]=\dfrac{30-10i}{36-4}[/tex]

[tex]=\dfrac{30-10i}{32}[/tex]

[tex]=\dfrac{30}{32}-\dfrac{10i}{32}[/tex]

[tex]=\dfrac{15}{16}+(-\dfrac{5}{16})i[/tex]

Therefore, the form a+bi is [tex]\dfrac{15}{16}+(-\dfrac{5}{16})i[/tex], where, [tex]a=\dfrac{15}{16}[/tex] and [tex]b=(-\dfrac{5}{16})[/tex].