contestada

A parabola can be drawn given a focus of (0, 2) and a directrix of y = 0. Write the
equation of the parabola in any form.

Respuesta :

Given:

Focus of a parabola = (0,2)

Directrix: y=0.

To find:

The equation of parabola.

Solution:

The equation of parabola is

[tex]y=\dfrac{1}{4p}(x-h)^2+k[/tex]       ...(i)

where, (h,k) is vertex, (h,k+p) is focus, y=k-p is directrix.

Focus : [tex](h,k+p)=(0,2)[/tex]

On comparing both sides, we get

[tex]h=0[/tex]

[tex]k+p=2[/tex]          ...(ii)

On comparing y=k-p and y=0, we get

[tex]k-p=0[/tex]          ...(iii)

Adding (ii) and (iii), we get

[tex]2k=2[/tex]

[tex]k=1[/tex]

Putting k=1 in (ii).

[tex]1+p=2[/tex]

[tex]p=2-1[/tex]

[tex]p=1[/tex]

Putting h=0, k=1 and p=1 in (i).

[tex]y=\dfrac{1}{4(1)}(x-(0))^2+(1)[/tex]

[tex]y=\dfrac{1}{4}x^2+1[/tex]

Therefore, the equation of required parabola is [tex]y=\dfrac{1}{4}x^2+(1)[/tex].