Respuesta :

Answer:

The solution to the system of equations be:

[tex]y=4,\:x=0[/tex]

As the consistent system of equations has only one solution, it is independent.

Step-by-step explanation:

Given the system of equations

[tex]3y + 2x= 12[/tex]

[tex]36 - 9y = -6x[/tex]

solving the system of equations

[tex]\begin{bmatrix}3y+2x=12\\ 36-9y=-6x\end{bmatrix}[/tex]

Arrange equation variables for elimination

[tex]\begin{bmatrix}3y+2x=12\\ -9y+6x=-36\end{bmatrix}[/tex]

[tex]\mathrm{Multiply\:}3y+2x=12\mathrm{\:by\:}3\:\mathrm{:}\:\quad \:9y+6x=36[/tex]

[tex]\begin{bmatrix}9y+6x=36\\ -9y+6x=-36\end{bmatrix}[/tex]

so

[tex]-9y+6x=-36[/tex]

[tex]+[/tex]

[tex]\underline{9y+6x=36}[/tex]

[tex]12x=0[/tex]

[tex]\begin{bmatrix}9y+6x=36\\ 12x=0\end{bmatrix}[/tex]

solve 12x=0 for x

[tex]12x=0[/tex]

Divide both sides by 12

[tex]\frac{12x}{12}=\frac{0}{12}[/tex]

[tex]x=0[/tex]

[tex]\mathrm{For\:}9y+6x=36\mathrm{\:plug\:in\:}x=0[/tex]

[tex]9y+6\cdot \:0=36[/tex]

[tex]9y=36[/tex]

Divide both sides by 9

[tex]\frac{9y}{9}=\frac{36}{9}[/tex]

[tex]y=4[/tex]

Thus, the solution to the system of equations be:

[tex]y=4,\:x=0[/tex]

As the consistent system of equations has only one solution, it is independent.