Respuesta :
Step-by-step explanation:
[tex]A = lw[/tex]
[tex]A=(5x-3)(6x-4)[/tex]
[tex]A=30x^2-20x-18x+12[/tex]
[tex]A=30^2-28x+12[/tex]
[tex]P=2(l + w)[/tex]
[tex]P = 2(5x - 3 + 6x - 4)\\P=2(x-7)\\P=2x-14[/tex]
Answer:
[tex]Perimeter = 22x - 14[/tex]
[tex]Area = 30 {x}^{2} - 38x + 12[/tex]
Step-by-step explanation:
Length of rectangle (l) = 5x - 3
Weidth of rectangle (w) = 6x - 4
Perimeter of the rectangle = [tex]2(l + w)[/tex]
[tex] = > 2(5x - 3 + 6x - 4)[/tex]
[tex] = > 2(11x - 7)[/tex]
[tex] = > 22x - 14[/tex]
Area of the rectangle = [tex]l \times w[/tex]
[tex] = > (5x - 3)(6x - 4)[/tex]
[tex] = > 5x(6x - 4) - 3(6x -4)[/tex]
[tex] = > 30 {x}^{2} - 20x - 18x + 12[/tex]
[tex] = > 30 {x}^{2} - 38x + 12[/tex]