Answer:
[tex]y=2x+4[/tex]
Step-by-step explanation:
You can solve this two ways: insert the values into point-slope form and simplify to solve for y, converting it to slope-intercept form, or insert the values into slope-intercept form, solve for b, and insert b. We'll do both :)
Point-slope form:
[tex]y-y_{1}=m(x-x_{1})[/tex]
Where:
Insert the given values:
[tex]m=2\\\\(-5_{x_{1}},-6_{y_{1}})\\\\y-(-6)=2(x-(-5))\\\\y+6=2(x+5)[/tex]
Solve for y. Expand the right sie using the distributive property:
[tex]y+6=2(x)+2(5)\\\\y+6=2x+10[/tex]
Isolate the variable. Subtract 6 from both sides, canceling out the 6 on the left:
[tex]y+6-6=2x+10-6\\\\y=2x+4[/tex]
OR
Slope-intercept form:
[tex]y=mx+b[/tex]
Where:
Insert the given values:
[tex]m=2\\\\(-5_{x},-6_{y})\\\\-6=2(-5)+b[/tex]
Simplify the multiplication:
[tex]-6=-10+b[/tex]
Solve for b. Add 10 to both sides, canceling out the 10 on the right:
[tex]-6+10=-10+10+b\\\\4=b[/tex]
The value of b is 4. Insert the appropriate information into the equation. When using slope-intercept form, you don't plug in the coordinate points:
[tex]y=2x+4[/tex]
:Done