identify the k-value that makes the relationship shown in the table below proportional.

Answer:
The value of k that makes the relationship shown in the table below proportional is [tex]\mathbf{\frac{1}{2}}[/tex]
Step-by-step explanation:
The relation is proportional if [tex]y=kx \:or\:k=\frac{y}{x}[/tex]
Putting values of x and y to find k.
For x =2 and y =1 k is: [tex]k=\frac{y}{x}=\frac{1}{2}[/tex]
For x =4 and y =2 k is: [tex]k=\frac{y}{x}=\frac{2}{4} =\frac{1}{2}[/tex]
For x =6 and y = 3 k is: [tex]k=\frac{y}{x}=\frac{3}{6} =\frac{1}{2}[/tex]
For x = 8 and y = 4 k is: [tex]k=\frac{y}{x}=\frac{4}{8} =\frac{1}{2}[/tex]
For x =10 and y = 5 k is: [tex]k=\frac{y}{x}=\frac{5}{10} =\frac{1}{2}[/tex]
So, The value of k that makes the relationship shown in the table below proportional is [tex]\mathbf{\frac{1}{2}}[/tex]