Respuesta :

Answer:

[tex] \huge{ \boxed{ \tt{17 \: cm}}}[/tex]

Option D is the correct choice.

First , Let's know about right triangle , legs and hypotenuse :

  • A right triangle is a triangle with an angle of 90°.
  • The two sides that form the right angle are called legs.
  • The opposite side of right angle is the hypotenuse.

☥ Let's explore about The Pythagorean Theorem :

  • Pythagoras was one of the first mathematician to recognize the relationship between the sides of a right triangle. This special relationship forms ' The Pythagorean Theorem '.
  • The Pythagorean theorem states that the sum of the squares of the legs of a right triangle equals the square of the length of a hypotenuse.
  • In algebraic terms , The Pythagorean Theorem is stated as : [tex] \boxed{ \sf{ {a}^{2} + {b}^{2} = {c}^{2} }}[/tex]

------------------------------------------------------------

Now , let's start to solve :

✑ [tex] \underline{ \underline{ \text{Given}}} : [/tex]

  • a = 8 cm , b = 15 cm

✑ [tex] \underline{ \underline{ \text{To\: Find}}} : [/tex]

  • Length of a hypotenuse ( c )

✐ [tex] \underline{ \bold{ \underline{Using \: Pythagorean \: Theorem}}} \: : [/tex]

☞ [tex] \boxed{ \bold{ \sf{ {a}^{2} + {b}^{2} = {c}^{2} }}}[/tex]

Substitute the known values :

↦ [tex] \sf{ {8}^{2} + {15}^{2} = {c}^{2}}[/tex]

↦ [tex] \sf{64 + 225 = {c}^{2} }[/tex]

↦ [tex] \sf{289 = {c}^{2} }[/tex]

↦ [tex] \sf{ {c}^{2} = 289 }[/tex]

Take the square roots of both sides :

↦ [tex] \sf{ \sqrt{ {c}^{2} } = \sqrt{289}} [/tex]

↦ [tex] \boxed{ \sf{c = 17 \: cm}}[/tex]

The length of the hypotenuse is [tex] \boxed{ \bold{ \text{17 \: cm}}}[/tex].

And we're done!!

Hope I helped!

Have a wonderful day ! ツ

~TheAnimeGirl ♡

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

Ver imagen TheAnimeGirl