Respuesta :
Answer:
[tex]= log_{10} 11.33\\[/tex]
Step-by-step explanation:
Given the expression;
[tex]log_{10}(\frac{30}{10} ) - 2log_{10} \frac{5}{9} + log_{10}(\frac{400}{343} )[/tex]
Using the law of logarithm;
loga + logb = log(ab) and;
log a - log b = log(a/b)
The expression becomes;
[tex]= log_{10}(\frac{30}{10} ) + log_{10}(\frac{400}{343} )- 2log_{10} \frac{5}{9}\\= log_{10}(\frac{30}{10} ) + log_{10}(\frac{400}{343} )- log_{10} (\frac{5}{9})^2\\= log_{10}(\frac{30}{10} ) + log_{10}(\frac{400}{343} )- log_{10} \frac{25}{81}\\= log_{10}(\frac{30}{10} \times \frac{400}{343} \div \frac{25}{81})\\= log_{10}(\frac{30}{10} \times \frac{400}{343} \times \frac{81}{25})\\= log_{10}(\frac{3 \times 16 \times 81}{343} )\\= log_{10} \frac{3,888}{343} \\= log_{10} 11.33\\[/tex]
9514 1404 393
Answer:
= log(3888/343)
= log(3888) -log(343)
= 4·log(2) +5·log(3) -3·log(7)
≈ 1.054432
Step-by-step explanation:
Perhaps you want to simplify and evaluate the logarithm.
The applicable rules are ...
log(a/b) = log(a) -log(b)
n·log(a) = log(a^n)
__
We will use "log" for "log10". So, your logarithm can be written as ...
log(30/10) -2·log(5/9) +log(400/343)
= log(3) +log(81/25) +log(400/343)
= log(3·81·400/(25·343)) = log(3888/343)
= log(3888) -log(343)
= log(2^4·3^5) -log(7^3) = 4·log(2) +5·log(3) -3·log(7) ≈ 1.054432
_____
Additional comment
My personal favorite form is the log of a fraction, as it requires the fewest calculator keystrokes. Perhaps the "simplest" is the weighted sum of the logs of primes.