Respuesta :

Answer:

[tex] a = 4 [/tex]

[tex] b = 2\sqrt{3} [/tex]

Step-by-step explanation:

✔️Solving for a using trigonometric ratio:

reference angle = 60°

hypotenuse = a

adjacent = 2

Thus:

[tex] cos(60) = \frac{2}{a} [/tex]

[tex] \frac{1}{2} = \frac{2}{a} [/tex] (cos 60 = ½)

Cross multiply

[tex] 1*a = 2*2 [/tex]

[tex] a = 4 [/tex]

✔️Solving for b using trigonometric ratio:

reference angle = 60°

Opposite = b

Adjacent = 2

Thus:

[tex] tan(60) = \frac{b}{2} [/tex]

Multiply both sides by 2

[tex] tan(60)*2 = \frac{b}{2}*2 [/tex]

[tex] tan(60)*2 = b [/tex]

[tex] \sqrt{3}*2 = b [/tex] (tan 60 = √3)

[tex] 2\sqrt{3} = b [/tex]

[tex] b = 2\sqrt{3} [/tex]