Respuesta :

Answer:

[tex]\boxed {\boxed {\sf (4,6) }}[/tex]

Step-by-step explanation:

The midpoint formula is:

[tex](\frac{{x}_{1}+{x}_{2}}{2},\frac{{y}_{1}+{y}_{2}}{2} )[/tex]

where (x₁, y₁) and (x₂, y₂) are the points are the endpoints.

We are given the points: (2,4) and (6,8). Therefore,

[tex]x_1=2\\y_1=4 \\x_2=6 \\y_2=8[/tex]

Substitute the values into the formula.

[tex](\frac{2+6}{2},\frac{4+8}{2})[/tex]

Find the x coordinate first.

  • Add 2 and 6: 2+6=8
  • Divide by 2: 8/2=4

[tex](4, \frac{4+8}{2})[/tex]

Find the y-coordinate next.

  • Add 4 and 8: 4+8= 12
  • Divide by 2: 12/2=6

[tex](4,6)[/tex]

The midpoint of EF is (4,6)

[tex] \large\bf \underline{Given:-}[/tex]

  • E has the coordinates of (2,4)
  • F has coordinates of (6,8)

[tex] \large\bf \underline{To \: Find:-}[/tex]

  • The midpoint of EF.

[tex]\large\bf \underline{ Solution:-}[/tex]

[tex] \sf \: Here, \\ \sf (2,4) = ( x_{1}, y_{1}) \\ \sf (6,8) = ( x_{ 2}, y_{2})[/tex]

We know that,

[tex] \sf \bigstar \: Formula \: to \: find \: the \: midpoint = ( \frac{ x_{1} + x_{2} }{2}, \: \frac{ y_{1} + y_{2} }{2} )[/tex]

[tex] \sf \: Hence, \: The \: midpoint \: of \: EF \: is = ( \frac{2 + 6}{2} , \frac{4 + 8}{2} )[/tex]

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf = ( \frac{8}{2} , \frac{12}{2} )[/tex]

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf =( 4,6)[/tex]

[tex] \bf \: Therefore, the \: midpoint \: of \: EF \: is \: (4,6).[/tex]