Choose the point on the terminal side of 135°.
A. (-1, sqrt 3)
B. (-sqrt 3, 1)
C. (-1, 1)
D. (sqrt 3, -1)

Respuesta :

Correct answer is C. (-1, 1)

Hope it helps

Answer:

The correct option is C. The point on the terminal side of 135° is (-1,1).

Step-by-step explanation:

The point must be lies on the second quadrant because terminal angle is 135°.

Let the required point be (x,y).

[tex]\tan\theta=\frac{y}{x}[/tex]

[tex]\tan(135^{\circ})=\frac{y}{x}[/tex]

[tex]\tan(90^{\circ}+45^{\circ})=\frac{y}{x}[/tex]

Using quadrant concepts, above equation can be written as

[tex]-\cot(45^{\circ})=\frac{y}{x}[/tex]           [tex][\because \cot 45^{\circ}=1][/tex]          

[tex]-1=\frac{y}{x}[/tex]                          ..... (1)

In option A,

[tex]\frac{y}{x}=\frac{\sqrt{3}}{-1} =-\sqrt{3}\neq -1[/tex]

In option B,

[tex]\frac{y}{x}=\frac{1}{-\sqrt{3}} =-\frac{1}{\sqrt{3}}\neq -1[/tex]

In option C,

[tex]\frac{1}{-1}=-1[/tex]

Therefore option C is correct.

In option B,

[tex]\frac{y}{x}=\frac{1}{\sqrt{3}} =\frac{1}{\sqrt{3}}\neq -1[/tex].

Therefore correct option is C. The point on the terminal side of 135° is (-1,1).

Ver imagen DelcieRiveria