Respuesta :

cos[7pi/4]=cos(2pi−pi4)
               =cos(−pi/4)
               =cos(pi4)
               =√2/2

Answer:

The exact value of [tex]\cos(-\frac{7\pi}{4})[/tex] is [tex]\frac{1}{\sqrt{2}}[/tex]    

Step-by-step explanation:

Given : Expression [tex]\cos(-\frac{7\pi}{4})[/tex] in radian.

To find : The The exact value of the given expression?

Solution :

Cos function is an even function i.e, [tex]\cos(-x)=\cos x[/tex]

So, [tex]\cos(-\frac{7\pi}{4})=\cos(\frac{7\pi}{4})[/tex]

Now, we convert the radian into degree, i.e, multiply by [tex]\frac{180}{\pi}[/tex]

[tex]=\cos(\frac{7\pi}{4}\times \frac{180}{\pi})[/tex]

[tex]=\cos(315^\circ)[/tex]

We know, [tex]\cos(360^\circ-\theta)=\cos \theta[/tex]      

[tex]\cos(315^\circ)=\cos(360^\circ-45^\circ)[/tex]

[tex]\cos(315^\circ)=\cos(45^\circ)[/tex]

The value of [tex]\cos(45^\circ)=\frac{1}{\sqrt{2}}[/tex]

[tex]\cos(315^\circ)=\frac{1}{\sqrt{2}}[/tex]

Therefore, The exact value of [tex]\cos(-\frac{7\pi}{4})[/tex] is [tex]\frac{1}{\sqrt{2}}[/tex]