Respuesta :
1 + cot² t = csc² t
[tex]1+cot ^{2} t = \frac{1}{sin ^{2} t} \\ 1+ \frac{cos^{2}t }{sin^{2}t } = \frac{1}{sin ^{2} t} [/tex] / * sin² t
sin² t + cos² t = 1
1 = 1
We have confirmed the identity.
[tex]1+cot ^{2} t = \frac{1}{sin ^{2} t} \\ 1+ \frac{cos^{2}t }{sin^{2}t } = \frac{1}{sin ^{2} t} [/tex] / * sin² t
sin² t + cos² t = 1
1 = 1
We have confirmed the identity.
The verification for the Pythagorean identity 1 + cot²∅ = cosec²∅ will lead to sin²∅ + cos²∅ = 1
How to verify Pythagorean identity?
1 + cot²∅ = cosec²∅
Therefore,
cosec²∅ = 1 / sin²∅
cot²∅ = 1 / tan²∅ = cos²∅ / sin²∅
Hence,
1 + cos²∅ / sin²∅ = 1 / sin²∅
Therefore, multiply both sides by sin²∅
1(sin²∅) + (sin²∅) cos²∅ / sin²∅ = (sin²∅) 1 / sin²∅
sin²∅ + cos²∅ = 1
learn more on Pythagorean identity here: https://brainly.com/question/11674053
#SPJ5