Respuesta :

Circumference of a circle:
C = 2 r π 
10 = 2 r π
r = 10 / 2π = 5 / π
Area of a circle:
A = r² π = ( 5 / π )² * π = 25 / π² * π = 25 / π ≠ 100
Answer: False.

Answer:

False

Step-by-step explanation:

Circumference(C) and Area(A) of the circle is given by:

[tex]C = 2 \pi r[/tex]

[tex]A = \pi r^2[/tex]

where, r is the radius of the circle.

As per the statement:

A circle with circumference of 10 has area of 100.

Circumference = 10 units

then;

[tex]2 \pi r = 10[/tex]

Divide both sides by [tex]2 \pi[/tex] we have;

[tex]r = \frac{5}{\pi}[/tex] units

Find area of circle:

[tex]A = \pi r^2[/tex]

Substitute the value of r we have;

[tex]A = \pi \cdot (\frac{5}{\pi})^2[/tex]

⇒[tex]A = \pi \cdot \frac{25}{\pi^2} = \frac{25}{\pi}[/tex]

But A = 100 square units

⇒[tex]A = \frac{25}{\pi} \neq 100[/tex]

Therefore, the given statement is FALSE