Respuesta :
Answer:
[tex]\sqrt{16x^{36} }[/tex] = ± 4 * [tex]\{x^{18}}[/tex].
Step-by-step explanation:
Given : [tex]16x^{36}[/tex].
To find : What is the square root.
Solution : We have given that [tex]16x^{36}[/tex].
Taking square root
[tex]\sqrt{16x^{36} }[/tex].
BY the radical rule :
[tex]\sqrt{a*b} = \sqrt{a} *\sqrt{b}[/tex].
So, we can write
[tex]\sqrt{16x^{36} }[/tex] = [tex]\sqrt{16} *\sqrt{x^{36}}[/tex].
We know that [tex]\sqrt{16}[/tex]= 4
[tex]\sqrt{x^{36}}[/tex] = [tex]\{x^{36/2}}[/tex].
Then [tex]\sqrt{16x^{36} }[/tex] = ± 4 * [tex]\{x^{18}[/tex].
Therefore, [tex]\sqrt{16x^{36} }[/tex] = ± 4 * [tex]\{x^{18}[/tex].