Respuesta :
Let
L--------> the length side of a rectangle
W--------> the width side of a rectangle
we know that
the area of a rectangle is equal to
[tex] A=L*W [/tex]
[tex] A= 120x^{2} + 78x - 90[/tex]
[tex] L=12x+15 [/tex]
To find the width side W of the rectangle we need to find the roots of the equation of the area
so
Equate to zero the area and find the roots
[tex] 120x^{2} + 78x - 90=0[/tex]
using a graph tool
see the attached figure
[tex] x=-1.25\\ x=0.6[/tex]
[tex] 120x^{2} + 78x - 90=120*(x+1.25)*(x-0.6)[/tex]
[tex] 120*(x+1.25)*(x-0.6)=6*(4x+5)*(5x-3)[/tex]
[tex] 6*(4x+5)*(5x-3)=3*(4x+5)*2*(5x-3)[/tex]
[tex] 3*(4x+5)*2*(5x-3)=(12x+15)*(10x-6)[/tex]
therefore
the answer is
the width of the rectangle is equal to [tex] (10x-6)[/tex]
