Respuesta :
By definition, the volume of a quarter of a sphere is given by:
[tex]V = (1/4) * (4/3) * (\pi) * (r ^ 3) [/tex]
Where,
r: sphere radius
Substituting values we have:
[tex]V = (1/4) * (4/3) * (3.14) * (60 ^ 3) [/tex]
Making the corresponding calculation we have:
[tex]V = 226080 feet ^ 3[/tex]
Answer:
The volume of the quarter-sphere shaped tank is:
[tex]V = 226080 feet ^ 3[/tex]
[tex]V = (1/4) * (4/3) * (\pi) * (r ^ 3) [/tex]
Where,
r: sphere radius
Substituting values we have:
[tex]V = (1/4) * (4/3) * (3.14) * (60 ^ 3) [/tex]
Making the corresponding calculation we have:
[tex]V = 226080 feet ^ 3[/tex]
Answer:
The volume of the quarter-sphere shaped tank is:
[tex]V = 226080 feet ^ 3[/tex]
Answer:
The volume of the quatter-sphere shaped tank is [tex]226,080 feet^3[/tex].
Step-by-step explanation:
Radius of the sphere,r = 60 feet
Volume of the sphere is given by:
[tex]V=\frac{4}{3}\pi r^3[/tex]
Volume of the sphere:(V)
[tex]\frac{4}{3}\times 3.14 \times (60 feet)^3=904,320 feet^3[/tex]
Volume of the quarter of the sphere:
[tex]\frac{1}{4}\times Volume(V) = 226,080 feet^3[/tex]
The volume of the quatter-sphere shaped tank is [tex]226,080 feet^3[/tex].