Respuesta :

Answer:

The value of x = -6    

Step-by-step explanation:

We know that if the line CD is parallel to line EF, then their slopes will be the same.

In other words:

slope [tex]CD[/tex] = slope [tex]EF[/tex]

As we know that the slope between two points will be:

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

Let's find the slope of CD

as

  • C(x, 16)
  • D(2,-4)

[tex]m\:\left(CD\right)=\frac{-4-16}{2-x}[/tex]

              [tex]=-\frac{20}{2-x}[/tex]

Now, let's find the slope of EF

as

  • E(-6, 14)
  • F(-2, 4)

[tex]m\left(EF\right)=\frac{4-14}{-2-\left(-6\right)}[/tex]

            [tex]=-\frac{10}{4}[/tex]

           

As we already pointed out that

[tex]m\left(CD\right)=\:m\left(EF\right)[/tex]

[tex]-\frac{20}{2-x}[/tex]   [tex]=-\frac{10}{4}[/tex]

   [tex]-20\cdot \:4=-\left(2-x\right)\cdot \:10[/tex]

[tex]\frac{-\left(2-x\right)\cdot \:10}{-10}=\frac{-80}{-10}[/tex]

       [tex]2-x=8[/tex]

              [tex]x=-6[/tex]

Therefore, the value of x = -6